MULTIVARIATE REGRESSION ANALYSIS WITH KICC METHOD IN MEASURING OF SOCIETY WELFARE IN SOUTH SULAWESI

Abstract

The level of society welfare is a shared hope in advancing a region. The welfare indicators of an area depend on economic growth that affects the income level and the level of regional development progress. The aim of this study is to determine the multivariate regression analysis in measuring level of the society welfare and know the factors that affect the level of society welfare in South Sulawesi. The research method used is applied research multivariate regression analysis with selection the smalles KICC (Kullback’s Information Criterion Corrected) value on the economic field. The result of multivariate regression analysis with KICC method that the correlation between the predictor variables of income percentage from taxes, retribution, acceptance of natural resource, investment, balancing fund and development fund to the percentage of regional income, economic growth, significant simultaneously. While partially, the results of acceptance of natural resource do not significantly affect the percentage of regional income, economic growth and the level of regional progress, so that regional income from the natural resource results need added again in improving public’s welfare. The level of accuracy of information data predictor variable to respond variabel in the multivariate regression is $R^2 = 0.9729$ or 97.29%.

Keywords: multivariate regression, KICC method, society welfare

1. Introduction

The welfare is a condition where the fulfillment of all forms of basic necessities, such as food, clothing, housing, education, and health care. This kind of understanding placement welfare as the goal of a development activity. For example, the purpose of development is to improve the society welfare level. Meaning of welfare as a tool to achieve development goals (Suhartono, 2009). In social policy, social welfare leads to service to meet the society needs, this is the term used in the idea of a prosperous country. Social welfare demands the fulfillment of
primary needs, secondary needs and tertiary needs. Welfare indicator in a region have influenced by the amount of regional income, the magnitude of economic growth and regional progress. These welfare indicators come from various sectors such as taxes, retribution, natural resource, investment, equity funds and development funds (Mudrajad, 2004).

The amount of income from various sectors affecting the economic indicators, will determine the level of welfare of each region, so it takes the right control and analysis so that the competition of each region will be healthy. The solution of the problem is a mathematical model that can be used to control and predict the variables that need to be controlled as an illustration of the welfare of districts and cities in South Sulawesi. The selected mathematical model is a multivariate regression with KICC (Kullback's Information Criterion Corrected) method.

The multivariate regression analysis is appropriate to model welfare society levels the district and cities in South Sulawesi because multivariate regression contain more than one response variable that correlates with one or more predictor variables. This, in accordance with the concept of welfare that has several indicators that have influenced by several other factors. Use of this model, supported by research ever conducted Riskiyanti and Wulandari (2011), Liu (2012) and Lestari (2016). From these studies, factors affecting wellbeing can be determined from factors that influence life expectancy, infant mortality rate, and malnutrition status. For example, if malnutrition increases in society means the government fails to provide prosperity or welfare.

Based on the magnitude of the relationship between response variables and predictor variables obtained it can be called that the model can explain the data information. So according to the description the author submits the title of Multivariate Regression Analysis with KICC method in Measuring of society Welfare in South Sulawesi. The aim of this study is to determine the multivariate regression analysis in measuring level of the society welfare and know the factors that affect the level of society welfare in South Sulawesi.

2. Methodology

The type of research used is applied research with quantitative data. The data used from the Central Statistics agency (BPS) of South Sulawesi Province in 2015. The response variable is the percentage of total regional income(Y_1), economic growth (Y_2), dan level of regional progress(Y_3). The predictor variable comprises the regional revenue of the tax sector (X_1), retribution (X_2), acceptance of natural resources (X_3), investment (X_4), balance funds (X_5) and development fund (X_6). The research procedure is (1) Look for the average, maximum and minimum value, (2) Form parameters of multivariate regression equation and select the best model with KICC model. (3) Testing the model significance. (4) Determine the relationship between variables in the model, and (5) Interpreted multivariate regression models that obtained.

3. Findings and Discussion

3.1 Descriptive Statistics

Table 1 below is descriptive statistics for response variables. The response variable in this research is percentage of total regional income(Y_1), economic growth (Y_2), and level of regional progress(Y_3).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Average</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>4.1658</td>
<td>2.67</td>
<td>12.05</td>
</tr>
<tr>
<td>Y_2</td>
<td>7.6858</td>
<td>5.23</td>
<td>10.16</td>
</tr>
<tr>
<td>Y_3</td>
<td>7.1791</td>
<td>5.10</td>
<td>8.81</td>
</tr>
</tbody>
</table>

While in Table 2 is descriptive statistics for predictor variables. The predictor variable comprises the regional revenue of the tax sector (X_1), retribution (X_2), acceptance of natural resources (X_3), investment (X_4), balance funds (X_5) and development fund (X_6).
3.2 Formation of Mutivariate Regression Model

a. Freedom test between response variables

The test used to determine the freedom between response variables is *Bartlett Sphericity* test, with hypothesis, H_0: Interresponse variables are independent, and H_1: Interresponse variables are dependent. Statistics test (Rencher, 2002),

$$
X_{hitung}^2 = -\left(n - 1 - \frac{2q + 5}{6}\right) \ln |R|
$$

$$
= -\left(24 - 1 - \frac{(2)(3) + 5}{6}\right) \ln \begin{pmatrix} 1 & 0.110 & 0.142 \\ 0.110 & 1 & 0.325 \\ 0.142 & 0.325 & 1 \end{pmatrix}
$$

$$
= -\left(23 - \frac{11}{6}\right) \ln(0.872)
$$

$$
= -(21,1667)(-0.1370)
$$

$$
= 2.8998
$$

$$
X_{table}^2 = \chi^2_{0.05, \frac{1}{2}(3-1)} = 7.815
$$

Based on the results obtained from Bartlett Sphericity test, it can be seen that $X_{hitung}^2 < X_{table}^2 (2.8998 < 7.815)$ then fail to reject H_0 so inter response variable is independent or free.

b. Testing the multivariate normal distribution of response variables

The examination of normal multivariate distribution can be done by making *q-q plot* from value d_i^2. If the results *q-q plot* value d_i^2 for response variables show the more 50% which has value $d_i^2 < \chi^2_{0.05}$ then the decision is to fail to reject H_0. Value d_i^2 and *q-q plot* obtained from testing using SPSS software. With hypothesis H_0: Normally distributed multivariate data and H_1: Data is not multivariate normal distribution. Statistics test:

$$
X_{table}^2 = \chi^2_{3, 0.5} = 2.366
$$

Tabel 3 obtained conditions where $d_i^2 < \chi^2_{table} = 2.366$ to 19 observations or 79.1667% from 24 observations. So, failed to refuse H_0 meaning that the data is normally multivariate distribution.

Table 2. Descriptive statistics for predictor variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Average</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>4.1670</td>
<td>0.35</td>
<td>60.43</td>
</tr>
<tr>
<td>X_2</td>
<td>4.1654</td>
<td>0.72</td>
<td>18.61</td>
</tr>
<tr>
<td>X_3</td>
<td>4.1666</td>
<td>0.48</td>
<td>47.23</td>
</tr>
<tr>
<td>X_4</td>
<td>4.1658</td>
<td>0.88</td>
<td>10.44</td>
</tr>
<tr>
<td>X_5</td>
<td>4.1658</td>
<td>2.87</td>
<td>7.72</td>
</tr>
<tr>
<td>X_6</td>
<td>4.1658</td>
<td>0.55</td>
<td>10.50</td>
</tr>
</tbody>
</table>

Table 3. Statistics test d_i^2 respond variable

d_i^2		d_i^2		d_i^2		
---------		---------		---------		---------
1	3.5158	13	1.7700			
2	3.6447	14	0.6655			
3	0.4910	15	1.2775			
4	0.5451	16	2.2541			
5	2.2021	17	0.7825			
6	0.4245	18	0.8638			
7	0.7060	19	0.7691			
8	9.2646	20	1.0506			
c. Estimation of Multivariate Regression Parameters

Regression multivariate model of the equation $Y_{n\times q} = X_{n\times(p+1)}\beta_{(p+1)\times q} + e_{n\times q}$

β is a matrix of regression parameters with size $(p + 1) \times q$.

Before making parameter estimation $\hat{\beta}$, first for matrix $Y_{n\times q}$ and $X_{n\times(p+1)}$ where n is sum observation, q is sum response variable and p is sum predictor variable (Rencher, 2002).

Notice following steps:

Step 1: $X^T X$

$$
X^T X = \begin{bmatrix}
0.0240 & 0.1000 & 0.1000 & 0.1000 & 0.1000 & 0.1004 & 0.1000 \\
0.1000 & 3.7800 & 1.2981 & 0.4154 & 0.8245 & 0.6382 & 0.7811 \\
0.1000 & 1.2981 & 0.7632 & 0.2591 & 0.5072 & 0.4610 & 0.4782 \\
0.1000 & 0.4154 & 0.2591 & 2.6141 & 0.7029 & 0.4206 & 0.4471 \\
0.1000 & 0.8245 & 0.5072 & 0.7029 & 0.3676 & 0.4406 & 0.4775 \\
0.1004 & 0.6382 & 0.4818 & 0.4206 & 0.4406 & 0.4476 & 0.4531 \\
0.1000 & 0.7811 & 0.4782 & 0.4471 & 0.4775 & 0.4531 & 0.5642
\end{bmatrix}
$$

Step 2: $(X^T X)^{-1} = \frac{1}{|X^T X|} \text{adj} (X^T X)$

$$(X^T X)^{-1} = \begin{bmatrix}
1.5803 & 0.0305 & -0.0069 & 0.0075 & -0.0743 & -0.3311 & 0.0064 \\
0.0305 & 0.0014 & -0.0021 & 0.0001 & -0.0018 & -0.0039 & 0.0010 \\
-0.0069 & -0.0021 & 0.0095 & 0.0009 & -0.0021 & -0.0064 & 0.0039 \\
0.0075 & 0.0001 & 0.0095 & 0.0000 & -0.0025 & -0.0019 & 0.0006 \\
-0.0743 & -0.0018 & -0.0021 & 0.0000 & 0.0006 & 0.0017 & -0.0037 \\
-0.3311 & -0.0039 & -0.0084 & -0.0019 & 0.0105 & 0.0062 & -0.0135 \\
0.0064 & -0.0010 & 0.0039 & 0.0006 & -0.0037 & -0.1035 & 0.0122
\end{bmatrix}
$$

Step 3: $X^T Y$

$$
X^T Y = \begin{bmatrix}
99.9800 & 184.4600 & 172.3000 \\
899.0663 & 756.7849 & 739.9180 \\
546.5703 & 749.0909 & 730.7842 \\
428.4535 & 635.2430 & 702.1846 \\
470.0491 & 786.6521 & 730.4221 \\
463.2000 & 778.7747 & 725.3372 \\
479.4435 & 791.7367 & 730.7512
\end{bmatrix}
$$

Step 4: $(X^T X)^{-1} X^T Y$

$$(X^T X)^{-1} X^T Y = \begin{bmatrix}
-0.3344 & 4.4695 & 5.3478 \\
0.0035 & -0.0549 & -0.0510 \\
-0.0146 & -0.0948 & 0.0518 \\
0.0063 & -0.0050 & -0.2884 \\
-0.0211 & 0.2028 & 0.1853 \\
1.0305 & 0.6160 & 0.2091 \\
-0.0089 & 0.1053 & 0.0725
\end{bmatrix}
= [\hat{\beta}_1; \hat{\beta}_2; \hat{\beta}_3]
$$

After completing the estimation we will get the following results:

$$\hat{Y} = X\hat{\beta}
$$

$$
\begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{bmatrix} = \begin{bmatrix}
1 & X_1 & X_2 & X_3 & X_4 & X_5 & X_6 \\
X_1 & X_1 & X_2 & X_3 & X_4 & X_5 & X_6 \\
X_2 & X_2 & X_2 & X_3 & X_4 & X_5 & X_6 \\
X_3 & X_3 & X_3 & X_3 & X_4 & X_5 & X_6 \\
X_4 & X_4 & X_4 & X_4 & X_4 & X_5 & X_6 \\
X_5 & X_5 & X_5 & X_5 & X_5 & X_5 & X_6 \\
X_6 & X_6 & X_6 & X_6 & X_6 & X_6 & X_6
\end{bmatrix}
$$

Based on the above form we get the multivariate regression model as follows:

$$\hat{Y}_1 = -0.3344 + 0.0835X_{11} - 0.0146X_{12} + 0.0063X_{13} - 0.0211X_{14} + 1.0305X_{15} - 0.0089X_{16}
$$

$$\hat{Y}_2 = 4.4695 - 0.0549X_{11} - 0.0948X_{12} - 0.0050X_{13} + 0.2028X_{14} + 0.1853X_{15} + 0.0725X_{16}
$$

$$\hat{Y}_3 = 5.3478 - 0.0051X_{11} + 0.0518X_{12} - 0.2884X_{13} + 0.1853X_{14} + 0.2091X_{15} + 0.0725X_{16}$$
d. Selection the best model with KICC method

The KICC value obtained from the equation \(KICC = n(\ln |\hat{\Sigma}| + q) + \frac{q(3n-p-q-1)}{n-p-q-1} \) (Sarah, 2015)

<table>
<thead>
<tr>
<th>No</th>
<th>Predictor</th>
<th>KICC</th>
<th>No</th>
<th>Predictor</th>
<th>KICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(X_1)</td>
<td>121.5497</td>
<td>31</td>
<td>(X_2 X_6)</td>
<td>108.5705</td>
</tr>
<tr>
<td>2</td>
<td>(X_2)</td>
<td>137.1329</td>
<td>32</td>
<td>(X_2 X_4)</td>
<td>91.4489</td>
</tr>
<tr>
<td>3</td>
<td>(X_3)</td>
<td>119.4041</td>
<td>33</td>
<td>(X_3 X_5)</td>
<td>105.9137</td>
</tr>
<tr>
<td>4</td>
<td>(X_4)</td>
<td>150.3305</td>
<td>34</td>
<td>(X_3 X_6)</td>
<td>90.8441</td>
</tr>
<tr>
<td>5</td>
<td>(X_5)</td>
<td>164.7953</td>
<td>35</td>
<td>(X_4 X_5)</td>
<td>136.8401</td>
</tr>
<tr>
<td>6</td>
<td>(X_6)</td>
<td>149.7257</td>
<td>36</td>
<td>(X_4 X_6)</td>
<td>121.7705</td>
</tr>
<tr>
<td>7</td>
<td>(X_1 X_2)</td>
<td>80.3945</td>
<td>37</td>
<td>(X_5 X_6)</td>
<td>136.2353</td>
</tr>
<tr>
<td>8</td>
<td>(X_1 X_3)</td>
<td>62.6681</td>
<td>59</td>
<td>(X_1 X_2 X_3)</td>
<td>21.5129</td>
</tr>
<tr>
<td>30</td>
<td>(X_2 X_5)</td>
<td>123.6401</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on Table 4 we selected the 63 value as the best model because it has the smallest KICC value of -48.4927 for all predictor variables available.

3.3 Testing Multivariate Regression Model

In the multivariate regression analysis there are parameter tests and assumption of residual assumptions to be performed.

a. Testing of significance model simultaneously

Testing of model simultaneously was performed to determine whether the overall parameters were significant in the model, using the Wilk's Lambda test. With Hypothesis \(H_0: \beta_{11} = \beta_{12} = \beta_{13} = \cdots = \beta_{63} = 0 \) (model is not significant) and \(H_1: \) at least one \(\beta_{pq} \neq 0 \) (model is significant), where \(p = 1,2,3,4,5,6 \) and \(q = 1,2,3 \). Statistics test (Rencher, 2002),

\[
\Lambda_{\text{hitung}} = \frac{|E|}{|E + H|} = \frac{|Y'Y - B'X'Y|}{|Y'Y - n\bar{y}'\bar{y}'|}
\]

\[
= \begin{bmatrix}
0.7211 & -0.3339 & 0.2336 \\
-0.3399 & 21.3964 & 4.2759 \\
0.2336 & 4.2759 & 16.0659 \\
\end{bmatrix}
\]

Obtained value \(\Lambda_{\text{hitung}} \) is 0.0271, then compared with the table value Wilk’s Lambda \(\Lambda_{0.05,6,17} \) is 0.229. Because value \(\Lambda_{\text{hitung}} < \Lambda_{0.05,6,17} \) (0.0271 < 0.229), then \(H_0 \) refused so that predictor variable significantly influence the response variable.

b. Testing of significance model partially

Testing of model partially aims to see the significant influence of each predictor variable on partially response variables. Hypothesis \(H_0: \beta_{pq} = 0 \) (regression parameter \(p \) variable predictor to the \(q \) variable response has not significant effect) and \(H_1: \beta_{pq} \neq 0 \) (regression
parameter p variable predictor to the q variable response has significant effect) where $p = 1, 2, 3, 4, 5, 6$ and $q = 1, 2, 3$. Decision test when meet $P_{value} < \alpha$, where α value used is 0.05, then the decision is H_0 refuse. After performing partial model test using SPSS software, the following results:

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>18.421</td>
<td>.475</td>
<td>38.754</td>
</tr>
<tr>
<td></td>
<td>x_1</td>
<td>1.146</td>
<td>.038</td>
<td>.576</td>
</tr>
</tbody>
</table>

* a. Dependent Variable: Y

Figure 1. Coefficient of respont variable Y with predictor variable X_1

Based on Figure 1 obtained P value value for predictor variabel X_1 is 0.001. Because $P_{value} < \alpha (0.001 < 0.05)$, then H_0 is rejected so regression parameter p predictor to q respon significantly influence predictor variable X_1 to respont variable Y_1, Y_2 and Y_3 partially.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>17.614</td>
<td>.741</td>
<td>23.766</td>
</tr>
<tr>
<td></td>
<td>x_2</td>
<td>3.40</td>
<td>.130</td>
<td>.488</td>
</tr>
</tbody>
</table>

* a. Dependent Variable: Y

Figure 2. Coefficient of respont variable Y with predictor variable X_2

Figure 2 obtained P value value for predictor variabel X_2 is 0.016. Because $P_{value} < \alpha (0.016 < 0.05)$, then H_0 is rejected so regression parameter p predictor to q respon significantly influence predictor variable X_2 to respont variable Y_1, Y_2 and Y_3 partially.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>18.012</td>
<td>.631</td>
<td>29.933</td>
</tr>
<tr>
<td></td>
<td>x_3</td>
<td>.029</td>
<td>.050</td>
<td>.100</td>
</tr>
</tbody>
</table>

* a. Dependent Variable: Y

Figure 3. Coefficient of respont variable Y with predictor variable X_3

Figure 3 obtained P value value for predictor variabel X_3 is 0.641. Because $P_{value} < \alpha (0.641 > 0.05)$, then H_0 is rejected so regression parameter p predictor to q respon nots significance influence predictor variable X_3 to respont variable Y_1, Y_2 and Y_3 partially.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>16.703</td>
<td>.906</td>
<td>17.294</td>
</tr>
<tr>
<td></td>
<td>x_4</td>
<td>.558</td>
<td>.199</td>
<td>.514</td>
</tr>
</tbody>
</table>

* a. Dependent Variable: Y

Figure 4. Coefficient of respont variable Y with predictor variable X_4

Based on Figure 4 obtained P value value for predictor variabel X_4 is 0.010. Because $P_{value} < \alpha (0.010 < 0.05)$, then H_0 is rejected so regression parameter p predictor to q respon significantly influence predictor variable X_4 to respont variable Y_1, Y_2 and Y_3 partially.
Figure 5. Coefficient of respon variable Y with predictor variable X₅

Figure 5 obtained P value for predictor variabel X₅ is 0.000. Because value < α (0.000 < 0.05), then H₀ is rejected so regression parameter p predictor to q responstant significantly influence predictor variable X₅ to responstant variable Y₁, Y₂ and Y₃ partially.

Figure 6. Coefficient of Y respon variable with X₆ predictor variable

Figure 6 obtained P value for predictor variabel X₆ is 0.016. Because value < α (0.016 < 0.05), then H₀ is rejected so regression parameter p predictor to q responstant significantly influence predictor variable X₆ to responstant variable Y₁, Y₂ and Y₃ partially.

c. Testing of residual assumption identical

Testing of residual assumption identical used Box’s M test with criteria test

\[u < \chi^2_{table} = \chi^2_{\alpha/2}(k-1)p(p+1) \]

Hypothesis H₀: \(\Sigma_1 = \Sigma_2 = \Sigma_3 = \Sigma \) (varian-covarian matrix residual homogen) and H₁: at least one \(\Sigma_i \neq \Sigma_i \) for \(i \neq j \) (varian-covarian matrix residual heterogen).

Statistics test (Rencher, 2002):

\[u = -2(1 - c_q) \ln M \]
\[= -2(1 + 0.0036)(-28.3975) \]
\[= 56.9995 \]
\[\chi^2_{table} = \chi^2_{0.05/2}(3-1)6(6+1) = \chi^2_{0.05/2} = \chi^2_{3.05,42} = 58.259 \]

Because of \(u < \chi^2_{table} \) than failed to refuse H₀ that means the variant-covariant matrix residual is homogeneous and can be inferred residual identical

d. Testing of residual assumption independent

For testing of residual assumption independent used Bartlett Sphericity test. With hypothesis H₀: Residual data is independent and H₁: Residual data independent.

Statistics test (Rencher, 2002):

\[\chi^2_{count} = \left(n - 1 - \frac{2q + 5}{6} \right) \ln |R| \]
\[= \left[24 - 1 - \frac{(2)(3) + 5}{6} \right] \ln \left| \begin{array}{ccc} 1 & -0.085 & 0.069 \\ -0.085 & 1 & 0.231 \\ 0.069 & 0.231 & 1 \end{array} \right| \]
\[= -\left(23 - \frac{11}{6} \right) \ln(0.9332) \]
\[= -(21,1667)(-0.0704) \]
\[= 1.4901 \]
\[\chi^2_{table} = \chi^2_{0.05,3} = 7.815 \]
Based on Bartlett Sphericity test, obtained $\chi^2_{\text{hitung}} < \chi^2_{\text{table}} (1.4901 < 7.815)$ than failed to refuse H_0 so residual data is independent.

e. Testing of residual assumption multivariate normal distribution

Testing of residual assumption multivariate normal distribution was performed by the same procedure with testing response variable multivariate normal distribution. With hypothesis H_0: Residual multivariate normal distribution and H_1: Residual not multivariate normal distribution.

Statistik test (Risikiyantri, 2011):

$$\chi^2_{\text{table}} = \chi^2_{3, 2} = 2.366$$

<table>
<thead>
<tr>
<th>i</th>
<th>d_i^2</th>
<th>i</th>
<th>d_i^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0717</td>
<td>13</td>
<td>0.6438</td>
</tr>
<tr>
<td>2</td>
<td>2.5465</td>
<td>14</td>
<td>0.4860</td>
</tr>
<tr>
<td>3</td>
<td>2.0679</td>
<td>15</td>
<td>1.2015</td>
</tr>
<tr>
<td>4</td>
<td>1.1891</td>
<td>16</td>
<td>3.2668</td>
</tr>
<tr>
<td>5</td>
<td>2.0264</td>
<td>17</td>
<td>1.0731</td>
</tr>
<tr>
<td>6</td>
<td>0.1632</td>
<td>18</td>
<td>0.2443</td>
</tr>
<tr>
<td>7</td>
<td>1.6052</td>
<td>19</td>
<td>0.0922</td>
</tr>
<tr>
<td>8</td>
<td>7.0922</td>
<td>20</td>
<td>1.2227</td>
</tr>
<tr>
<td>9</td>
<td>3.2185</td>
<td>21</td>
<td>1.4570</td>
</tr>
<tr>
<td>10</td>
<td>1.6572</td>
<td>22</td>
<td>0.0085</td>
</tr>
<tr>
<td>11</td>
<td>1.1268</td>
<td>23</td>
<td>0.7837</td>
</tr>
<tr>
<td>12</td>
<td>9.4898</td>
<td>24</td>
<td>0.2658</td>
</tr>
</tbody>
</table>

Based on Table 5 obtained $d_i^2 < \chi^2_{\text{table}} = 2.366$ to 18 observation or 75% from 24 observation. So can be concluded that residual multivariate normal distribution.

3.4 Relations Between Variable in Model

Multivariate regression, the measure used in determining the relationship between the response variable and the predictor is Eta Square Lambda as follows (Mardiantor, 2013):

$$\eta^2_A = 1 - \Lambda_{\text{cohort}}$$

$$= 1 - 0.0271$$

$$= 0.9729$$

$$\text{Eta square Lambda} = 97.29\%$$

Value $\eta^2_A = 0.9729$ has the meaning that predictor variables are able to explain accuracy of data is 97.29% on respon variable, while 2.71% explained by other predictor variables that has not been studied, so that all the variables contained in the model are sufficiently influential to measure the society welfare of districts and cities in South Sulawesi.

4. Conclusion

1. Testing of multivariate regression model simultaneously that predictor variable (X) significant effect to respon variable (Y). And testing of model partially, only predictor variable (X_3) has not significant effect to respon variable (Y). While, predictor variable (X_1, X_2, X_4, X_5 and X_6) the all significant effect to respon variable (Y). Therefore, variable X_3 is regional income from the natural resource (SDA) results need added again in improving public's welfare.

2. The level of accuracy of information data predictor variable to respon variable in the multivariate regression is $\eta^2_A = 0.9729$ or 97.29%. While, the rest 2.71% explained by other predictor variables that have not been studied.
5. References

Sarah, Itta Agathya. 2015. Kullback’s Information Criterion Correction (KICC) untuk Seleksi Model Regresi Linear Multivariat. Yogyakarta: FMIPA-UGM,