TOTAL EDGE IRREGULARITY STRENGTH OF COMPLETE 3-PARTITE GRAPHS K_(1,1.m) AND K_(1,2,M)

Andi Muhammad Anwar

Abstract


A total edge irregular -labeling of a graph  G=(V,E) is a labeling  \phi:V(G) \cup E(G) -> {1,2,3,...,k} such that the weight of any two different edge are distinct. The weight of an edge uv is wt(uv)=\phi(u)+\phi(v)+\phi(uv) . The total edge irregularity strength of ,tes(G) , is the minimum k for which a graph G has a total edge irregular k-labeling. In this paper, the total edge irregularity strength of complete 3-partite graphs K_(1,1,m) and K_(1,2,m) are shown.

Full Text:

PDF

References


Baca,M., Jendrol,S., Miller, M.(2007). On Irregular Total Labellings. Discrete Math.307:1378-1388.

Gallian, J.A.(2013). Graph Labeling. Electron.J.Combin.Dyn.Surv.16.

Ivanco, J., Jendrol, S.(2006). Total Edge Irregularity Strength of Trees. Disc.Math.Graph Theory.26:449-456.

Jendrol, S., Miskuf, J., Sotak, R.(2010). Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs. Electron. Notes Discrete Math.310:400-407.

Nurdin, Salman, A.N., Baskoro, E.T.(2008). The total Edge Irregular Strengths of The Corona Product of Paths with some Graphs. JCMCC.65:163-175.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Andi Muhammad Anwar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.